7 research outputs found

    The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo

    Get PDF
    Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections

    Heritage materials and biofouling mitigation through UV-C irradiation in show caves: state-of-the-art practices and future challenges

    No full text
    Biofouling, i.e., colonization of a given substrate by living organisms, has frequently been reported for heritage materials and particularly on stone surfaces such as building facades, historical monuments, and artworks. This also concerns subterranean environments such as show caves, in which the installation of artificial light for tourism has led to the proliferation of phototrophic microorganisms. In Europe nowadays, the use of chemicals in these very sensitive environments is scrutinized and regulated by the European Union. New and environmentally friendly processes must be developed as alternative methods for cave conservation. For several years, the UV irradiation currently used in medical facilities and for the treatment of drinking water has been studied as a new innovative method for the conservation of heritage materials. This paper first presents a review of the biofouling phenomena on stone materials such as building facades and historical monuments. The biological disturbances induced by tourist activity in show caves are then examined, with special attention given to the methods and means to combat them. Thirdly, a general overview is given of the effects of UV-C on living organisms, and especially on photosynthetic microorganisms, through different contexts and studies. Finally, the authors’ own experiments and findings are presented concerning the study and use of UV-C irradiation to combat algal proliferation in show caves. Both laboratory and in situ results are summarized and synthesized from their previously published works. The application of UV in caves is discussed and further experiments are proposed to enhance research in this domain

    New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP

    No full text

    Management and 1-year outcomes of patients with newly diagnosed atrial fibrillation and chronic kidney disease: Results from the prospective garfield-af registry

    No full text
    Background-—Using data from the GARFIELD-AF (Global Anticoagulant Registry in the FIELD–Atrial Fibrillation), we evaluated the impact of chronic kidney disease (CKD) stage on clinical outcomes in patients with newly diagnosed atrial fibrillation (AF). Methods and Results-—GARFIELD-AF is a prospective registry of patients from 35 countries, including patients from Asia (China, India, Japan, Singapore, South Korea, and Thailand). Consecutive patients enrolled (2013–2016) were classified with no, mild, or moderate-to-severe CKD, based on the National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative guidelines. Data on CKD status and outcomes were available for 33 024 of 34 854 patients (including 9491 patients from Asia); 10.9% (n=3613) had moderate-to-severe CKD, 16.9% (n=5595) mild CKD, and 72.1% (n=23 816) no CKD. The use of oral anticoagulants was influenced by stroke risk (ie, post hoc assessment of CHA2DS2-VASc score), but not by CKD stage. The quality of anticoagulant control with vitamin K antagonists did not differ with CKD stage. After adjusting for baseline characteristics and antithrombotic use, both mild and moderate-to-severe CKD were independent risk factors for all-cause mortality. Moderate-to-severe CKD was independently associated with a higher risk of stroke/systemic embolism, major bleeding, new-onset acute coronary syndrome, and new or worsening heart failure. The impact of moderate-to-severe CKD on mortality was significantly greater in patients from Asia than the rest of the world (P=0.001). Conclusions-—In GARFIELD-AF, moderate-to-severe CKD was independently associated with stroke/systemic embolism, major bleeding, and mortality. The effect of moderate-to-severe CKD on mortality was even greater in patients from Asia than the rest of the world
    corecore